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Abstract: 

Diabetes is one of the most vital global health issues. It spreads rapidly all over the world's population, 

with the World Health Organization estimating that 415 million people worldwide have a medical condition; by 

2040, that number is expected to rise to 642 million. Diabetes is known to be a condition caused by both genetic and 

lifestyle factors. A bad lifestyle makes a person more at risk of acquiring diabetes, and risky social interactions play 

a major role in poor habits. On the other hand, a genetic component is the primary cause of the genetic condition 

associated with diabetes. The two most common types of diabetes are Type 1 and Type 2, which are caused by 

decreased insulin production and decreased body responsiveness to insulin, respectively. Initial indicators of 

diabetes, such as increased pee, impaired vision, unexplained weight loss, and abnormal energy metabolism, are 

mostly caused by hyperglycemia. For the majority of diabetics, maintaining an optimal blood glucose level requires 

continuous treatment. Effective control is therefore essential to improving the control of diabetes. An ordinary 

differential equation system forms the foundation of the model. We analyze the model's endemic equilibrium, 

disease-free equilibrium, and reproduction number. A stability study indicates that when the equilibrium of disease-

free is locally asymptotically stable [LAS], alternatively, unstable when  R0 > 1 .We also develop MATLAB to 
assist with the equations of the model. Eventually, this study will provide a comprehensive account of how diabetes 

complications develop following a diagnosis. The outcomes can be utilized to learn how to improve a nation's general 

public health, since governments should create smart and successful initiatives for diabetes screening and treatment. 

Keywords: Diabetes, mathematical modeling, stability, equilibrium points, reproduction number.  

 

1. Introduction 

Diabetes is a persistent illness that mostly impacts type 1 and type 2 blood sugar levels. Type 1 diabetes, which often 

appears in young people, is caused by an autoimmune reaction that destroys the insulin-producing cells in the 

pancreas, making the use of insulin essential for the duration of one's life. On the other hand, type 2 diabetes is more 

common in adults but is also affecting younger populations as a result of obesity trends. It is caused by either 

insufficient insulin production or cellular resistance to the effects of insulin. Both forms are frequently accompanied 

by symptoms that indicate the need for immediate medical intervention, such as increased thirst, frequent urination, 

and fatigue. Diabetes can have serious side effects if it is not controlled, such as nerve damage, kidney failure, and 

heart disease.  The goal of treatment is to stabilize blood sugar levels using prescription medication in addition to 

dietary and activity adjustments. Type 2 diabetes can be greatly reduced by adopting lifestyle modifications like 

maintaining a healthy weight and engaging in physical activity, but type 1 diabetes cannot be prevented. This 

mailto:1cjay465446@gmail.com


Musik in bayern 
ISSN: 0937-583x Volume 89, Issue 4 (April -2024) 
https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2024-253 

 
  
 
 
 

highlights the significance of proactive health management and preventive measures in the fight against this 

widespread condition. 

Our research aims to examined  the spread of diabetes infected people and therefore we determined a mathematical 

model of diabetes disease(Dt, D1, D2, CS).  The four compartments are ; Diabetes people (Dt), Type-1 (D1), Type-2 

(D2),Cure or Stable (CS).  we used matrix to prove all the Eigen values are negative, we examined  a certain endemic 

equilibrium is asymptotically stable, and  we solved the concept of locally asymptotically stable condition , This 

work is  identified to control the infection of diabetes people, on which one can act to control the spread of the 

infection. The numerical reproductions are done and they explore our vague analysis. We used matrix to calculate 

the reproduction number R0, solving various parameter numerical values of the model of the provided mathematical 
statement using MATLAB. Following analysis, the findings indicate a definite increase in the number of indictments, 

an increase in the illness measure of the effect of diabetes, and a decrease in the number of indictments related to the 

disease measure of diabetes for mortality populations. 

2. Characterization  of the exemplary confines: 

𝐷𝑡 : diabetes people  

𝐷1 : Type 1  

𝐷2: Type 2  

𝐶𝑆 : Cure or Stable 

𝜓 : The rate of diabetes infected Type 1 people 

𝜙 : The rate of diabetes infected Type 2 people 

𝛾: The rate of diabetes infected Type 1 stable people 

𝛿: The rate of diabetes infected people Type 2 cure / stable stage 

𝜇 : The rate of natural death rate 

 

3. Model diagram 
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Fig.1 compartmental diagram for human population affected by diabetes 

 

dDt

dt
= ND − ψDt − ϕDt − μDt  (1) 

𝑑𝐷1

𝑑𝑡
= ψDt − μD1 − γD1           (2) 

𝑑𝐷2

𝑑𝑡
= 𝜙𝐷𝑡 − 𝜇𝐷2 − 𝛿𝐷2           (3) 

𝑑𝐶𝑆

𝑑𝑡
= 𝛿𝐷2 − 𝜇𝐶𝑆 + 𝛾𝐷1            (4) 

 

Subject to initial conditions below 

𝐷𝑡(0) ≥ 0, 𝐷1(0) ≥ 0, 𝐷2(0) ≥ 0, 𝐶𝑆(0) ≥ 0 

 

4. Disease free equilibrium 

We assume that the lack of the substance does not harm every mortal person; hence, the population is immune to the 

infection. 

 

𝑑𝐷𝑡

𝑑𝑡
= ND − ψDt − ϕDt − μDt = 0 

𝐷𝑡 =
𝑁𝐷

(𝜓 + 𝜙 + 𝜇)
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(
𝑁𝐷

(𝜓+𝜙+𝜇)
,0,0,0) 

Endemic equilibrium point: 

𝐷𝑡(𝜓 + 𝜙 + 𝜇) − 𝑁𝐷 = 0 

𝐷𝑡
∗ = 0 

 

The complimentary equilibrium defect is expressed as follows: 

𝐷1 =
𝜓𝐷𝑡

(𝜇 + 𝛾)
 

In equation 𝐷1 Replace 𝐷𝑡,  

𝐷1
∗ =

𝜓 (
𝑁𝐷

𝜓+𝜙+𝜇
)

(𝜇 + 𝛾)
 

𝐷2 =
𝜙𝐷𝑡

(𝜇 + 𝛿)
 

 

 

 

In equation 𝐷2 Replace 𝐷𝑡, 

 

𝐷2
∗ =

𝜙 (
𝑁𝐷

𝜓+𝜙+𝜇
)

(𝜇 + 𝛿)
 

𝐶𝑆 =
𝛿𝐷2 + 𝛾𝐷1

𝜇
 

In equation 𝐶𝑆 Replace 𝐷2 and 𝐷1, 

 

𝐶𝑆
∗ =

𝛿 (
𝜙𝐷𝑡

𝜇+𝛿
) + 𝛾 (

𝜓𝐷𝑡

𝜇+𝛾
)

𝜇
 

 

Hence the endemic equilibrium points are(𝐷𝑡
∗, 𝐷1

∗, 𝐷2
∗, 𝐶𝑆

∗) 
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𝐷𝑡
∗ = 0, 𝐷1

∗ =
𝜓 (

𝑁𝐷

𝜓+𝜙+𝜇
)

(𝜇 + 𝛾)
, 𝐷2

∗ =
𝜙 (

𝑁𝐷

𝜓+𝜙+𝜇
)

(𝜇 + 𝛿)
, 𝐶𝑆

∗ =
𝛿 (

𝜙𝐷𝑡

𝜇+𝛿
) + 𝛾 (

𝜓𝐷𝑡

𝜇+𝛾
)

𝜇
 

 

𝐷𝑡 are affected cases, we find out reproduction number 𝑅0,let x = (Dt, D1, D2, CS), 𝐹𝑅 be the indication of a modern 

disease entering the system and VRthe indication of a sickness leaving the structure, the following will serve as an 

instance: 

The above cases infectious classes is D1 

 

𝐹𝑅 = [

ψDt

0
0
0

]and      𝑉𝑅 = [

(𝜇 + 𝛾)𝐷1

(𝜓 + 𝜙 + 𝜇)

𝜇 + 𝛿
𝜇

]
𝑑𝐷1

𝑑𝑡
= ψDt − μD1 − γD1 

The derivatives of 𝐹𝑅and 𝑉𝑅are given  by 𝐹𝑅 = ψ, and 𝑉𝑅 = (𝜇 + 𝛾)Respectively 

The inverse of 𝑉𝑅is given by 𝑉𝑅
−1 =

1

(𝜇+𝛾)
 

So, a values of 𝐹𝑅𝑉𝑅
−1gives the well-known basic reproduction number: 

 

𝑅0(𝐷1) =
ψ

(𝜇 + 𝛾)
 

 

 

 

 

5. Stability of the system 

5.1 Local stability of disease free equilibrium 

If 𝑅0 < 1, The equilibrium free from disease is either locally asymptotically stable or unstable, if 𝑅0 > 1. 

The model's Jacobian matrix can be found using; 

 

J = [

−(ψ + ϕ + μ) 0 0 0
ψ −(γ + μ) 0 0
ϕ 0 −(δ + μ) 0
0 0 𝛿 −μ

] 
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𝐷𝑡 = 𝐷1 = 𝐷2 = 𝐶𝑆 = 0 

Computing the Jacobian matrix yields the determinant of disease-free equilibrium; 

|J − 𝜆𝐼| = 0, where λ is the Eigen values. 

 

J = [

−(ψ + ϕ + μ) − λ 0 0 0
ψ −(γ + μ) − λ 0 0
ϕ 0 −(δ + μ) − λ 0
0 0 𝛿 −μ − λ

] 

Four negative Eigen values are obtained here, and the DFE is asymptotically stable locally. 

 

5.2 Global Stability of Endemic Equilibrium  

 

If , 𝑅0 > 1After that, the equilibrium of the disease endemic will be asymptotically stable.  

We shall demonstrate the following using the Lyapunov function: 

𝐷𝐿 = (𝐷𝑡
∗, 𝐷1

∗, 𝐷2
∗, 𝐶𝑆

∗) 

(𝐷𝑡 − 𝐷𝑡
∗ − 𝐷𝑡𝐼𝑛

𝐷𝑡
∗

𝐷𝑡
∗) + (𝐷1 − 𝐷1

∗ − 𝐷1𝐼𝑛
𝐷1

∗

𝐷1
∗) + (𝐷2 − 𝐷2

∗ − 𝐷2𝐼𝑛
𝐷2

∗

𝐷2
∗) + (𝐶𝑆 − 𝐶𝑆

∗ − 𝐶𝑆𝐼𝑛
𝐶𝑆

∗

𝐶𝑆
∗) 

Computing the derivative of 𝐷𝐿 , we get 

 

𝐷𝑑𝐿

𝑑𝑡
= ((

𝐷𝑡 − 𝐷𝑡
∗

𝐷𝑡
)

𝑑𝐷𝑡

𝑑𝑡
+ (

𝐷1 − 𝐷1
∗

𝐷1
)

𝑑𝐷1

𝑑𝑡
+ (

𝐷2 − 𝐷2
∗

𝐷2
)

𝑑𝐷2

𝑑𝑡
+ (

𝐶𝑆 − 𝐶𝑆
∗

𝐶𝑆
)

𝑑𝐶𝑆

𝑑𝑡
) 

 

 

Substituting our model equation in 
𝐷𝑑𝐿

𝑑𝑡
above we get 
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𝐷𝑑𝐿

𝑑𝑡
= ((

𝐷𝑡 − 𝐷𝑡
∗

𝐷𝑡
) (ND − ψDt − ϕDt − μDt) + (

𝐷1 − 𝐷1
∗

𝐷1
) (ψDt − μD1 − γD1)

+ (
𝐷2 − 𝐷2

∗

𝐷2
) (𝜙𝐷𝑡 − 𝜇𝐷2 − 𝛿𝐷2) + (

𝐶𝑆 − 𝐶𝑆
∗

𝐶𝑆
) (𝛿𝐷2 − 𝜇𝐶𝑆 + 𝛾𝐷2)) 

 

Here consider A is negative and B non negative values.  Then 
𝐷𝑑𝐿

𝑑𝑡
=A-B 

 

A=(−𝜓 − 𝜙 − 𝜇)𝐷𝑡
∗ + (−𝜇 − 𝛾)𝐷1

∗ + (−𝜇 − 𝛿)𝐷2
∗ + (−𝜇)𝐶𝑆

∗ 

 

A=−(𝜓 + 𝜙 + 𝜇)𝐷𝑡
∗ − (𝜇 + 𝛾)𝐷1

∗ − (𝜇 + 𝛿)𝐷2
∗ − (𝜇)𝐶𝑆

∗ 

 

B=𝑁𝐷 (
𝐷𝑡

∗

𝐷𝑡
) + 𝜓𝐷𝑡 (

𝐷1
∗

𝐷1
) + 𝜙𝐷𝑡 (

𝐷2
∗

𝐷2
) + (𝛿 + 𝛾)𝐷2 (

𝐶𝑆
∗

𝐶𝑆
) 

 

If A<B then 
𝐷𝑑𝐿

𝑑𝑡
≤ 0, 

𝐷𝑑𝐿

𝑑𝑡
= 0 if and only if 

𝐷𝑡 = 𝐷𝑡
∗ = 𝐷1 = 𝐷1

∗ = 𝐷2 = 𝐷2
∗ = 𝐶𝑆 = 𝐶𝑆

∗ 

(𝐷𝑡, 𝐷1, 𝐷2, 𝐶𝑆) ∈ 𝛼
𝐷𝑑𝐿

𝑑𝑡
= 0 

We prove the asymptotic stability of the endemic equilibrium result. 

 

 

 

 

 

6. Numerical reproduction 
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Fig.2 stability analysis of diabetes population when ND = 10 

 

 

 

Fig.3 stability analysis of diabetes population when ND = 100 
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Fig.4 stability analysis of  diabetes people when ND = 1000 

 

 

Fig.5 stability analysis of diabetes people when ND = 10,000 
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Fig.6 Comprehensive analysis of differential equations 

 

In this paper, we utilize distinct numerical values for Fig. 2 to Fig. 5 to ensure the stabilization of all parameters. Fig. 

6 illustrates the solution of the differential equation. The results of a stability analysis of the mathematical model for 

diabetes within the framework of dynamic systems theory are presented in this research. We find that the DFE is 

locally asymptotically stable, the endemic equilibrium is asymptotically stable, and the reproduction number R0 

represents the disease equilibrium. We also show that all of the eigenvalues in the matrix are negative. The disease-

endemic equilibrium that is asymptotically stable will be held to if R0 < 1. We showed that the Lyapunov function 

is used to obtain the parameters of the human populations affected by diabetes at random values. 

7. Conclusions 

This study delves into the dynamic modeling and stability analysis of diabetes epidemiology using mathematical 

frameworks. Our methodology entails delineating the Disease-Free Equilibrium (DFE) to characterize uninfected 

individuals, alongside deriving the endemic equilibrium point. Leveraging the Jacobian matrix, we elucidate the 

asymptotic stability of diabetic populations, supplemented by the establishment of global stability conditions through 

Lyapunov functions. MATLAB simulations, based on random data inputs, further illustrate the dynamics of diabetes 

infection. Diagrammatic representations in Figures 2-6 offer visual clarity on the model equations. Ultimately, this 

research contributes valuable insights into comprehending and addressing the complexities of diabetes epidemiology 

dynamics. 
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